 
         Your complimentary articles
You’ve read one of your four complimentary articles for this month.
You can read four articles free per month. To have complete access to the thousands of philosophy articles on this site, please
Poetry
Democritus’s Cone
by Sarah Adams
A paradox, one less well-known,
 Asks us to contemplate a cone:
 A figure with smooth sloping sides
 Which horizontally divides
 Into two halves, so that have we
 Two surfaces: one a, one b.
 The bottom of the top we’ll say
 Is denoted by the letter a,
 And b denotes the upper side
 Of the half which did reside
 Directly underneath the top
 Antecedent to the chop.
So let us turn now and reflect
 Upon the cone we did bisect.
 Something will be shown amiss
 When we now consider this:
 Is the area of b the same
 As that of a (the surface plane
 at the bottom of the top, we said),
 Or is unequal b instead?
 Either answer can’t be true,
 The reasons I will talk you through:
 If a unequal is to b
 Then after all cannot have we
 A cone with edges smoothly sloping
 (This is surely thought-provoking)
 But a pyramid: something stepped.
 This you will have to accept,
 For surfaces different in size
 Lead us to the cone’s demise.
 And yet if b to a is equal
 To the cone this too proves lethal,
 For once we’ve chosen to profess
 That indeed we do possess
 Surfaces stacked up high,
 The same in size (not just nearby)
 Then somewhat paradoxically,
 The cone is not a cone, you see,
 But a cylinder.
© Sarah Adams 2014
Sarah Adams is a PhD student at the University of Leeds who works on Metaphysics, Philosophy of Religion, and, in her non-existent spare time, the lesser-known field of Philosophical Poetry.








